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Where and How and What you Measure
Evolution of IAQ measurements 1978-2013

* Organic chemicals
— TVOC ( non-methane hydrocarbons?)
IVOC
PAH
SVOC
VVOC
* Microbes
— CFU/m3
— OTUs
— Relative abundance

 Particles
— Mass/volume
— Number
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Three famous scientists (Einstein, Pascal, and Newton)
are playing “hide and go seek”
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1,2,3,4,5,6..
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| caught you, Newton!
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No you didn’t. You caught 1 pa.
1 Newton/m? = 1 Pascal
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A Philosophical Point

“Everything should
be made as simple
as possible, but not
simpler.”

EINSTEIN SIMRLIFIED

— Albert Einstein

Slide courtesy of William W Nazaroff
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Inherently complex subject

* People (~ 1019 « Many aspects are dynamic
* Buildings (~ 10°) and interconnected through
» Contaminants (~ 10°) (?) natural, technical, and
* Environmental conditions social feedback loops.

Portland, Oregon (2010)
Slide courtesy of William W Nazaroff
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What is the purpose of the measurement?
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Fig. |. Source-oriented, air pollution health effects paradigm. After Smith [3.9.

Nazaroff, 2008. Building and Environment 43 269-277
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Perspectives on scale

- Earth’ s atmosphere: ~ 5000 Eg
« Humans collectively breathe ~ 0.04 Eg/y (~ 10 ppmly)

« Humans use ~ 0.1 Egly of air to burn fossil fuels
* Buildings are ventilated with ~ 5 Egly of air
- Cities (**) are “ventilated” with ~ 600 Egly of air

microbe
molecule + city
house ¥
atom UFP “PM10 human+ atmosphere  earth
P I ¥ ' ! v
107° 10°  10° 10 102 1 10® 10t 10°

characteristic length scale (m)

[*) Reminder: E = 10 (exa); (**) 3600 cities with P > 10° (2 billion total)

Slide courtesy of William W Nazaroff
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[some of the] Important factors that affect
indoor air pollutant concentrations

e Sources: - no sources, no pollutants

e Ventilation: dilution and removal of indoor
source pollutants as well as introduction of
outdoor air with moisture and pollutants.

* Sinks
(are pollutants on surfaces or in dust part of “indoor
air”)?

* Reactions
For reaction products, when do you measure?

» Time (everything changes)
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Important factors that affect indoor air pollutant
concentrations

e Source strength — is it constant? what affects its variations?
How representative of average, peak, and low strength is it
during sample collection. How does temperature affect it
and its effect on occupants?

— Reactions — gas transformations through reactions with other
airborne constituents

— Deposition — on surfaces of building, contents, occupants, and
airborne particles

— Phase change - solid, liquid, vapor, gas
* Ventilation — dilution, removal by exhaust, direction of air
flow (from or away from occupants)?

* Time - “everything changes”
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Ventilation rates, source strengths, and
concentrations: oversimplified relationships

Oversimplified model:

Concentration [ngmE]
== % ] Cad i n %7 |

L)
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outdoor
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Variable air volume OA ventilation
(mechanical ventilation system)
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AER (h)vsT, -T,,.

Grot, Persily, Daisey, and Hodgson, 1989, NISTI 89-4066R
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AER (h)vsT, -T,,.
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HVAC with VAV operations: % Outdoor Air
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Variable air volume OA ventilation
(mechanical ventilation system)

100
90
B0
70
&0
50
40
30
20

10

0 0 2 4 & g 10 12 14 1s 18 20 22 24 2% 28 30 32
Temperature °C

Hal Levin 19



Building Average Air Change Rate {ach)

St. Louis office building
(Nabinger, Persily, and Dols, 1994, ASHRAE Transactions)
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Figure 6  Building air change rate as a function of indoor-outdoor temperature difference.
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St. Louis office building
(Nabinger, Persily, and Dols, 1994, ASHRAE Transactions)
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Figure 8  Maximum carbon dioxide concentration vs. air change rate.
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Types of natural ventilation

Stack effect (buoyancy) Wind-driven (pressure)
 Warm air is lighter (less dense) * Pressure differences result in air
than cold air mass movement
 Warm air rises, cold air falls * “Packets” of air flow from higher
 Intentional chimneys (stacks) can to lower air pressure regimes

create larger differences between
top and bottom, increasing the

: Current Surface
alr fIOW rate LILT RAIN/DRIZZLE EIMOD/HVY RAIN | A IN/ICE/S KOW _|LT SNOW/FLUR _IMOD/HVY SNOW _IFOC




Hot air ‘buoyancy

Parachute Valve

adojaauz

Parachute
Valve Cord

Propane Tanks
(Inside)



Natural Driving Mechanisms — Pressure:
Wind-driven air flow




Wind Pressure as a function of angle of incidence on
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Grantham Hospital Study, Hong Kong

Yuguo Li, WHO 2009
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Natural ventilation in buildings

Francis Allard, Mat Santamouris, Servando Alvarez, European Commission.

Directorate-General for Energy, ALTENER Program

Volumetric Flow
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Figure 2.33. Airflow as a function of the temperature difference
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Weather — “wait a minute and it will change”

Current Surface
LT RAIN/DRIZZLE EIMOD/HVY RAIN | RAIN/ICE/SNOW _ILT SNOW/FLUR _ |MOD/HVY SNOW _|FOG

The
Weather
p Channel

: e weather.com
28 Jul 2010 22:41 GMT / 28 Jul 2010 06:41 PM EDT S neeon
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ELSEVIER Building and Environment 39 (2004) 1157-1170

www_elsevier.com/locat

How to use natural ventilation to cool narrow office buildings

E. Gratia®, I. Bruyére , A. De Herde

Sunny summer day: 24 - 7
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Fig. 7. Climatic data of the sunny summer day.
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Weather conditions and ventilation mode
Armoury Tower — Shanghai, China
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July 24, 2009

March 1, 2009

Boston, MA
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January 1, 2009

October 1, 2008
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Ventilation rates, source strengths, and
concentrations

Need to plot concentrations, source strengths, and ventilation rates
for various key compounds using data from Block 225.

Figure 1. 6" floor TVOC source strengths (ug/m? h)

Figure 2. 6 floor VOC source strengths (ug/m? h)
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Using CO, to estimate ventilation rates:
Variations in occupant generation rates

METABOLISM AS A
FUNCTION OF...

e Activity level (metabolic
rate)*

* Diet (metabolic rate)*
e Sex(?)*

 Age (size?) *
 Obesity? *

* Health status

* Stress (Wang, 1971, ASHRAE
Transactions)

* EPA Exposure Factors Handbook
2011
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Time-, day-, and Season-dependent variation in outdoor CO,

CO,1.
o2 PP [CO, ], ppm
pr. Vernadskogo 2006 ) 4401 (g pr. Vernadskogo, 2006
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450 | h i k o
4(}0“ ’ N“‘ "‘“ ‘W |
t 'I || 400 [ | | | | | |
350 | | | | 0 4 8 12 16 20 24
15.05 30.05 15.06 30.06 16.07 )
Date ’

(1) winter, (2) spring,
(3) summer, and (4) fall.

22 August 2013 Hal Levin 36



further evidence of microbes on all indoor surfaces —
“unidentified complex surface films” - UCSF

Gene sequence anaIYsis: further evidence for soiling by squames
Slide courtesy of Charles J. Weschler from Plenary lecture, 22 Aug 2013
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Sources of microbes found on different surfaces in public toilets

Fierer et al., as reported in Science, Feb 10, 2012



Humans contribute a significant fraction of bacteria found in indoor air and dust

Slide courtesy of Charles J. Weschler from Plenary lecture, 22 Aug 2013

Gene sequence analysis: indoor air & dust
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Representative samples?

Representative of what?
— All similar buildings
— Other (all) buildings for similar uses

— All local buildings (neighborhood, city, state, socio-
cultural type, climate)

— Exposure or portion of total exposure
Purpose of sample collection and analysis?

— Health effects risks

— Building performance
Compared to what?

— Standards and Guidelines

— Large population samples

— Yesterday, today and tomorrow?
Sampling biases?

— Location of sample collection?

— Timing: duration, peak, average?

Hal Levin
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Steady state construct (theory) and
real world buildings

In summary

“Everything changes”

- Suzuki Roshi
(contemporary Zen master)

Hal Levin
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Principles of Building Ecology - 1

Building ecology defined:

Building ecology is the study of the behavior of
buildings in relationship to their occupants and
the larger environment
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Principles of Building Ecology - 2

1. Everything changes

(Suzuki Roshi, Zen master [dates: ])

2. Everything is connected to everything

(John Muir, Naturalist [dates: ])
(Barry Commoner, Ecologist [dates: ])

3. Every building site and each building is unique

Principles of Building Ecology - 1
22 August 2013 Hal Levin
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Everything changes

 Temperature (T)
— Indoors
— Outdoors
— Diurnal cycles
— Seasonal cycles
e Relative humidity (RH) (% of moisture relative to 100% [saturated]
alr
— As T goes up, RH decreases (and the reverse)

— Cold air holds less absolute moisture than warm air; as we warm the air
indoors in the winter, the RH goes down

* [|-O Temperature ratio
* |-O RH ratio

* |-O pressure relationships:
— driving forces for indoor air exchange rate
— Air moves from warm to cold (gas molecules more active, “energized”
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Everything is connected to everything*

* Chaos theory — ‘when a butterfly flaps its wings in Basel, the
weather changes in Beijing.

e Ecosystems are complex webs of inter-related and inter-
dependent living organisms sharing the same geology,
hydrology, climate and weather

e Buildings [for human occupancy] are “ecosystems” (note:
plants are optional)

* Building ecology looks at buildings as part of a complex
ecosystems: the building, its contents and occupants, and
the larger environment

* John Muir, Barry Commoner
22 August 2013 Hal Levin 44



Every building site and each building is unique

Identical house designs built on different sites will respond
differently to their environment — geology, soil, hydrology,
microbes, termites, etc.

Studies of houses of identical designs built by the same crew
on sequential days had air leakage differences as large as a
factor of two.
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Fundamental relationships

 Simplest model:
— Steady state
— Source, Ventilation, Concentration

* Next level model:
— Dynamic
— Sources:
* point, distributed
* Episodic, periodic, continuous, modulating
— Removal mechanisms:
e Ventilation
e Sinks
* Reactions

22 August 2013 Hal Levin
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Complexity of source characterization

Sources change over time
— Natural decay of organic chemicals emitted from building materials,
furnishings
New sources introduced
— Consumer products
— Furnishings
— Personal care products

22 August 2013 Hal Levin
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Where does mold grow?

e Wet surfaces
e Moisture

* Where and when do these
occur

22 August 2013 Hal Levin
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Environmental Conditions

condensation
Where would you look for moist surfaces, mold?

Summertime

49



Where would you look for moist surfaces, mold?
Wintertime

50



New ideas: new challenges
Unidentified complex surface films - UCSF

* Take Charlie Weschler’s description of the surfaces of a
human-occupied environment, filled with squames covering
every surface.

 Add to that the bacteria that hitchhike on those shed skin
cells (2000/cm? of skin surface)

* The bacteria form “biofilms” where they emit chemicals to
help themselves survive and to compete with their enemies

* So you have the SVOCs, the SOAs, the non-viable particles,
and all those bacteria forming communities — bacteria grow
on the mold that grows on the wet wood or gypsum board
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